Outline

1. Motivation
2. Stable Manifold Theorem
3. Summary

1. Motivation

- The stable manifold theorem is one of the most important results in the local qualitative theory of ODE. It is similar to the linearization with different terminology: analytic way and geometric way.

2. Stable Manifold Theorem

1) The Linearized System

Consider the autonomous system

$$
\begin{equation*}
x^{\prime}=f(x), \tag{10.1}
\end{equation*}
$$

where $f(0)=0$ and $f \in C^{1}\left(B_{r}(0)\right)$. The linearized system is given by

$$
\begin{equation*}
x^{\prime}=A x \tag{10.2}
\end{equation*}
$$

where $A=D f(0)$. Let $x=0$ be hyperbolic for both (10.1) and (10.2).
Suppose that A in (10.2) has k eigenvalues with negative real part and $n-k$ eigenvalues with positive real part. Then $R^{n}=E^{s} \oplus E^{u}$ with $\operatorname{dim} E^{s}=k$ and $\operatorname{dim} E^{u}=n-k$. This situation can be essentially extended to (10.1) near any hyperbolic equilibrium.

2) Statement of Stable Manifold Theorem

Consider

$$
\begin{equation*}
x^{\prime}=A x+g(x), \tag{10.3}
\end{equation*}
$$

where $g(x)$ is C^{1} in U containing the origin, satisfying the basic condition as follows. $g(0)=0$ and $g^{\prime}(0)=0$. Moreover, for any $\varepsilon>0$ there exists $\delta>0$ such that

$$
\begin{equation*}
\|x\|<\delta,\|y\|<\delta \quad \Rightarrow \quad\|g(x)-g(y)\| \leq \varepsilon\|x-y\| \tag{10.4}
\end{equation*}
$$

Theorem 10.1 (Local Stable Manifold Theorem) Suppose that A in (10.3) has k eigenvalues with negative real part and $n-k$ eigenvalues with positive real part. Let $g(x)$ satisfy the basic condition. Then, there exist

1. an k-dimensional stable manifold $S=W^{s}(0)$ of class C^{1} for (10.3) with $\operatorname{dim} W^{s}(0)=\operatorname{dim} E^{s}$, tangent to the stable subspace E^{s} at $x=0$, which is invariant under the flow φ_{t} of (10.3) and φ_{t} that starts on $W^{s}(0)$ is exponentially decay as $t \rightarrow+\infty$;
2. an n - k-dimensional unstable manifold $U=W^{u}(0)$ of class C^{1} for (10.3) with $\operatorname{dim} W^{u}(0)=\operatorname{dim} E^{u}$, tangent to the unstable subspace E^{u} at $x=0$, which is invariant under the flow φ_{t} of (10.3) and φ_{t} that starts on $W^{u}(0)$ is exponentially decay as $t \rightarrow-\infty$.

3) An illustrative Example

Consider the following nonlinear system

$$
x^{\prime}=f(x),
$$

where $f(x)=\left(\begin{array}{c}-x_{1} \\ -x_{2}+x_{1}^{2} \\ x_{3}+x_{1}^{2}\end{array}\right) \cdot x=0$ is only equilibrium. The linearized system is given by

$$
x^{\prime}=D f(0) x,
$$

where $A=D f(0)=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$. Obviously, the stable subspace E^{s} is $x_{1}-x_{2}$ plane and unstable subspace E^{u} is x_{3}-axis. The solution with $x(0)=c=\left(c_{1}, c_{2}, c_{3}\right)^{T}$ is easily solved by

$$
x_{1}(t)=c_{1} e^{-t} ; \quad x_{2}(t)=c_{2} e^{-t}+c_{1}^{2}\left(e^{-t}-e^{-2 t}\right) ; \quad x_{3}(t)=c_{3} e^{t}+\frac{c_{1}^{2}}{3}\left(e^{t}-e^{-2 t}\right) .
$$

Clearly, $\lim _{t \rightarrow+\infty} \varphi_{t}(c)=0 \Leftrightarrow c_{3}+\frac{c_{1}^{2}}{3}=0$. Thus,

$$
W^{s}=\left\{c \in R^{3} \left\lvert\, c_{3}+\frac{c_{1}^{2}}{3}=0\right.\right\} .
$$

Similarly, $\lim _{t \rightarrow-\infty} \varphi_{t}(c)=0 \Leftrightarrow c_{1}=c_{2}=0$. Then,

$$
W^{u}=\left\{c \in R^{3} \mid c_{1}=c_{2}=0\right\} .
$$

The surface of the stable manifold S for this system is shown in Fig. 10.1, where S is tangent to E^{s} at $x=0$ and the surface of the unstable manifold U is identical to E^{u}.

Fig. 10.1

3) Proof of (Local) Stable Manifold Theorem

Proof. Since A has k eigenvalues with negative real part and $n-k$ eigenvalues with positive real part, there exists an $n \times n$ invertible matrix C s.t.

$$
B=C^{-1} A C=\left(\begin{array}{ll}
P & O \\
O & Q
\end{array}\right)
$$

where the eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}$ of $k \times k$ matrix P have negative real part and the eigenvalues $\lambda_{k+1}, \lambda_{k+2}, \cdots, \lambda_{n}$ of $(n-k) \times(n-k)$ matrix Q have positive real part. Under the transformation $x=C y$, (10.3) becomes

$$
\begin{equation*}
y^{\prime}=B y+h(y), \tag{10.5}
\end{equation*}
$$

where $h(y)=C^{-1} g(C y)$ still satisfy the basic condition. For simplicity, we still use the same notation of ε and δ used in (10.4).

It will be first shown in the proof that there exist $n-k$ differential functions

$$
y_{j}=\psi_{j}\left(y_{1}, y_{2}, \cdots, y_{k}\right), \quad j=k+1, \cdots, n,
$$

that define a k-dimensional differential manifold \tilde{S} for (10.5). Then, the local stable manifold S for (10.3) is obtained by $x=C y$.

Let

$$
U(t)=\left(\begin{array}{cc}
e^{P t} & O \\
O & O
\end{array}\right) \text { and } V(t)=\left(\begin{array}{cc}
O & O \\
O & e^{Q t}
\end{array}\right)
$$

Then,

$$
e^{B t}=U(t)+V(t)
$$

and

$$
U^{\prime}(t)=P U(t)=B U(t), \quad V^{\prime}(t)=Q V(t)=B V(t) .
$$

Then, we choose $\alpha>0$ sufficiently small s.t. $\max _{j=1, \cdots, k} \operatorname{Re} \lambda_{j}<-\alpha<0$. For such a $\alpha>0$ we can choose $K>0$ sufficiently large and $\sigma>0$ sufficiently small such that

$$
\|U(t)\| \leq K e^{-(\alpha+\sigma) t} \text { for all } t \geq 0 ;\|V(t)\| \leq K e^{\sigma t} \text { for all } t \leq 0
$$

Next consider the integral equation

$$
\begin{equation*}
u(t, a)=U(t) a+\int_{0}^{t} U(t-s) h(u(s, a)) d s-\int_{t}^{\infty} V(t-s) h(u(s, a)) d s \tag{10.6}
\end{equation*}
$$

If $u(t, a)$ is a continuous solution of (10.6), then, differentiating (10.6) on both sides yields

$$
\begin{aligned}
u^{\prime}(t, a)= & U^{\prime}(t) a+\int_{0}^{t} U^{\prime}(t-s) h(u(s, a)) d s-\int_{t}^{\infty} V^{\prime}(t-s) h(u(s, a)) d s \\
& +[U(0)+V(0)] h(u(t, a)) \\
= & B\left\{U(t) a+\int_{0}^{t} U(t-s) h(u(s, a)) d s-\int_{t}^{\infty} V(t-s) h(u(s, a)) d s\right\}+h(u(t, a)) \\
= & B u(t, a)+h(u(t, a)) .
\end{aligned}
$$

Then, $u(t, a)$ is a smooth solution of (10.5). We solve (10.6) by a successive approximation. Before solving (10.6), we assume $\varepsilon \leq \frac{\sigma}{4 K}$ and $\|a\| \leq \frac{\delta}{2 K}$ because
it is for the local. Let

$$
\begin{gathered}
u^{(0)}(t, a)=0 ; \\
u^{(j+1)}(t, a)=U(t) a+\int_{0}^{t} U(t-s) h\left(u^{(j)}(s, a)\right) d s-\int_{t}^{\infty} V(t-s) h\left(u^{(j)}(s, a)\right) d s .
\end{gathered}
$$

We will establish two estimates by induction as follows.

$$
\begin{array}{r}
\left\|u^{(j)}(t, a)\right\| \leq 2 K\|a\| e^{-\alpha t}, \text { for } t \geq 0 \\
\left\|u^{(j)}(t, a)-u^{(j-1)}(t, a)\right\| \leq \frac{K\|a\| e^{-\alpha t}}{2^{j-1}}, \text { for } t \geq 0 . \tag{10.8}
\end{array}
$$

To show (10.7), it holds for $j=0$ at first. Assume that (10.7) holds for $j=m$, i.e.

$$
\left\|u^{(m)}(t, a)\right\| \leq 2 K\|a\| e^{-\alpha t}, \text { for } t \geq 0 .
$$

Then, $\left\|u^{(m)}(t, a)\right\| \leq 2 K\|a\| \leq \delta$. Notice that for $V(t-s), t-s \leq 0$ as $s \geq t$. It follows that

$$
\begin{aligned}
\left\|u^{(m+1)}(t, a)\right\| & \leq\|U(t)\|\|a\|+\varepsilon \int_{0}^{t}\|U(t-s)\|\left\|u^{(m)}(s, a)\right\| d s+\varepsilon \int_{t}^{\infty}\|V(t-s)\|\left\|u^{(m)}(s, a)\right\| d s \\
& \leq K e^{-(\alpha+\sigma) t}\|a\|+2 \varepsilon K^{2}\|a\| \int_{0}^{t} e^{-(\alpha+\sigma)(t-s)} e^{-\alpha s} d s+2 \varepsilon K^{2}\|a\| \int_{t}^{\infty} e^{\sigma(t-s)} e^{-\alpha s} d s \\
& \leq K e^{-(\alpha+\sigma) t}\|a\|+2 \varepsilon K^{2}\|a\| \int_{0}^{t} e^{-(\alpha+\sigma)(t-s)} e^{-\alpha s} d s+2 \varepsilon K^{2}\|a\| \int_{t}^{\infty} e^{\sigma(t-s)} e^{-\alpha s} d s \\
& \leq K e^{-(\alpha+\sigma) t}\|a\|+2 \varepsilon K^{2}\|a\| e^{-\alpha t} \frac{1}{\sigma}+2 \varepsilon K^{2}\|a\| e^{-\alpha t} \frac{1}{\sigma+\alpha} \\
& \leq K\|a\|\left(e^{-(\alpha+\sigma) t}+e^{-\alpha t}\right) \leq 2 K\|a\| e^{-\alpha t}, \text { for } t \geq 0 .
\end{aligned}
$$

By induction, we have (10.7) for all j.
To show (10.8), we show that (10.8) holds for $j=1$ at first. Since

$$
\begin{aligned}
\left\|u^{(1)}(t, a)-u^{(0)}(t, a)\right\| & =\left\|u^{(1)}(t, a)\right\|=\|U(t) a\| \leq\|U(t)\|\|a\| \\
& \leq K\|a\| e^{-(\alpha+\sigma) t} \leq K\|a\| e^{-\alpha t}, \text { for } t \geq 0,
\end{aligned}
$$

then (10.8) holds for $j=1$. We assume that (10.8) holds for $j=m$. Notice that since $\left\|u^{(j)}(t, a)\right\| \leq 2 K\|a\| \leq \delta$ for all j and $t \geq 0$ by (10.7), we have

$$
\left\|h\left(u^{(m)}(t, a)\right)-h\left(u^{(m-1)}(t, a)\right)\right\| \leq \varepsilon\left\|u^{(m)}(t, a)-u^{(m-1)}(t, a)\right\|, \quad t \geq 0 .
$$

Then,

$$
\begin{aligned}
\left.\| u^{(m+1)}(t, a)\right)- & h\left(u^{(m)}(t, a)\right)\left\|\leq \int_{0}^{t}\right\| U(t-s)\|\cdot\| h\left(u^{(m)}(s, a)\right)-h\left(u^{(m-1)}(s, a)\right) \| d s \\
& +\int_{t}^{\infty}\|V(t-s)\| \cdot\left\|h\left(u^{(m)}(s, a)\right)-h\left(u^{(m-1)}(s, a)\right)\right\| d s \\
\leq & \varepsilon K \int_{0}^{t} e^{-(\alpha+\sigma)(t-s)} \cdot \frac{K\|a\| e^{-\alpha s}}{2^{m-1}} d s+\varepsilon K \int_{t}^{\infty} e^{-\sigma(t-s)} \cdot \frac{K\|a\| e^{-\alpha s}}{2^{m-1}} d s \\
\leq & \frac{\varepsilon K^{2}\|a\|}{2^{m-1}}\left\{e^{-(\alpha+\sigma) t} \int_{o}^{t} e^{\sigma s} d s+e^{-\sigma t} \int_{t}^{\infty} e^{-(\sigma+\alpha) s} d s\right\} \\
\leq & \varepsilon K^{2}\|a\| \\
2^{m-1} & \left(\frac{1}{\sigma}+\frac{1}{\sigma+\alpha}\right) e^{-\alpha t} \leq \frac{\varepsilon K^{2}\|a\|}{2^{m-2}} \cdot \frac{1}{\sigma} e^{-\alpha t} \leq \frac{K\|a\|}{2^{m}} e^{-\alpha t}, t \geq 0 .
\end{aligned}
$$

By induction, we have (10.8) for all j and $t \geq 0$. Thus, for $n>m \geq N$ and $t \geq 0$,

$$
\begin{aligned}
\left\|u^{(n)}(t, a)-u^{(m)}(t, a)\right\| & =\sum_{j=m}^{n}\left\|u^{(j+1)}(t, a)-u^{(j)}(t, a)\right\| \leq \sum_{j=N}^{\infty}\left\|u^{(j+1)}(t, a)-u^{(j)}(t, a)\right\| \\
& \leq \sum_{j=N}^{\infty} \frac{K\|a\| e^{-\alpha t}}{2^{j}} \leq K\|a\| \sum_{j=N}^{\infty} \frac{1}{2^{j}}=\frac{K\|a\|}{2^{N-1}} \rightarrow 0
\end{aligned}
$$

as $N \rightarrow \infty$ uniformly for all $t \geq 0$. Therefore, $\left\{u^{(j)}(t, a)\right\}$ is a uniform Cauchy sequence for $t \geq 0$. Then, $\lim _{j \rightarrow \infty} u^{(j)}(t, a)=u(t, a)$, which is continuous for $t \geq 0$. Moreover, by (10.7), we have

$$
\begin{equation*}
\|u(t, a)\| \leq 2 K\|a\| e^{-\alpha t} \text { for } t \geq 0 \text {, as }\|a\| \leq \frac{\delta}{2 K} \tag{10.9}
\end{equation*}
$$

Taking limit on both sides of (10.8), $u(t, a)$ is the solution of (10.6).
Look at (10.8) and notice that $U(t) a$, we know that the only previous k components of a can determine $u(t, a)$. Hence the last $n-k$ components of a may and will take all 0 . That is, $u(t, a)=\left(u_{1}(t, a), u_{2}(t, a), \cdots, u_{n}(t, a)\right)^{T}$ satisfy the initial conditions

$$
u_{j}(0, a)=a_{j}, \quad j=1,2, \cdots, k
$$

and based on (10.6) we have

$$
u_{j}(0, a)=-\int_{0}^{\infty} V(-s) h\left(u\left(s, a_{1}, a_{2}, \cdots a_{k}, 0, \cdots, 0\right)\right) d s, \quad j=k+1, k+2, \cdots, n .
$$

Now we are in the position to define the manifold $\Psi=\left(\psi_{k+1}, \psi_{k+2}, \cdots, \psi_{n}\right)$ by

$$
\begin{equation*}
\psi_{j}\left(a_{1}, a_{2}, \cdots, a_{k}\right)=u_{j}\left(0, a_{1}, a_{2}, \cdots, a_{k}, 0, \cdots, 0\right) . \tag{10.10}
\end{equation*}
$$

Then, the initial values $y_{j}=u_{j}\left(0, a_{1}, a_{2}, \cdots, a_{k}, 0, \cdots, 0\right)$ satisfy

$$
y_{j}=\psi_{j}\left(y_{1}, y_{2}, \cdots, y_{k}\right) \text { for } j=k+1, k+2, \cdots, n .
$$

According to (10.10), these equations define a manifold \tilde{S} in the domain of $\sqrt{y_{1}^{2}+y_{2}^{2}+\cdots+y_{k}^{2}}<\frac{\delta}{2 K}$. \tilde{S} is also differentiable (Similar to show that solutions are differentiable w.r.t. initial conditions. Omitted). It is locally defined.

Show that \tilde{S} is invariant. If $y(t)$ is a solution of (10.5) with $y(0) \in \tilde{S}$, i.e. $y(0)=u(0, a)$, then, $y(t)=u(t, a)$ by uniqueness. Therefore $y(t) \in \tilde{S}$ and by (10.9) $\lim _{t \rightarrow+\infty} y(t)=0$. Therefore, \tilde{S} is the stable invariant manifold.

Show that \tilde{S} is unique. If $y(t)$ is a solution of (10.5) with $y(0) \notin \tilde{S}$, then, $\lim _{t \rightarrow+\infty} y(t) \neq 0$. Show it by contradiction. Suppose that $\|y(t)\| \leq \delta$ for all $t \geq 0$. Solving (10.5), we have

$$
\begin{aligned}
y(t)= & e^{B t} y(0)+\int_{0}^{t} e^{B(t-s)} h(y(s)) d s \\
= & (U(t)+V(t)) y(0)+\int_{0}^{t}(U(t-s)+V(t-s)) h(y(s)) d s \\
= & \left.(U(t)+V(t)) y(0)+\int_{0}^{t} U(t-s) h(y(s)) d s+\int_{0}^{t} V(t-s)\right) h(y(s)) d s \\
= & (U(t)+V(t)) y(0)+\int_{0}^{t} U(t-s) h(y(s)) d s-\int_{t}^{\infty} V(t-s) h(y(s)) d s \\
& +\int_{0}^{\infty} V(t-s) h(y(s)) d s \\
= & U(t) y(0)+V(t) c+\int_{0}^{t} U(t-s) h(y(s)) d s-\int_{t}^{\infty} V(t-s) h(y(s)) d s,
\end{aligned}
$$

where $c=y(0)+\int_{0}^{\infty} V(-s) h(y(s)) d s$ is finite because the infinite integral converges. In the expression of $y(t), V(t)$ is unbounded because Q has eigenvalues with all positive real parts unless $c=0$. But if $c=0$, then $y(0)=-\int_{0}^{\infty} V(-s) h(y(s)) d s \in \tilde{S}$. This is a contradiction. The contradiction shows that \tilde{S} is locally unique.

Show that \tilde{S} is tangent to the stable subspace

$$
E^{s}=\left\{y \in R^{n} \mid y_{k+1}=y_{k+2}=\cdots=y_{n}=0\right\}
$$

of (10.5) at $y=0$. Notice that $\left.u_{j}(t, 0)\right|_{t=0}=0$ and $\|u(t, a)\| \leq 2 K\|a\| e^{-\alpha t}$, and

$$
\begin{aligned}
\left\|u_{j}(0, a)\right\| & \leq \int_{0}^{\infty}\|V(-s)\|\|h(u(s, a))\| d s \leq \varepsilon \int_{0}^{\infty}\|V(-s)\|\|u(s, a)\| d s \\
& \leq \varepsilon 2 K^{2}\|a\| \int_{0}^{\infty} e^{-(\sigma+\alpha) s} d s=\varepsilon 2 K^{2}\|a\| \frac{1}{\sigma+\alpha} \leq 2 \varepsilon K^{2}\|a\| \frac{1}{\sigma},
\end{aligned}
$$

we have

$$
\begin{gathered}
\frac{\partial \psi_{j}}{\partial y_{i}}(0)=\lim _{y_{i} \rightarrow 0} \frac{\psi_{j}\left(0, \cdots, 0, y_{i}, 0, \cdots, 0\right)-\psi_{j}(0, \cdots, 0)}{y_{i}}=\lim _{y_{i} \rightarrow 0} \frac{\psi_{j}\left(0, \cdots, 0, y_{i}, 0, \cdots, 0\right)}{y_{i}} ; \\
\psi_{j}\left(0, \cdots, 0, y_{i}, 0, \cdots, 0\right)=\left.\left.u_{j}\left(t, 0, \cdots, 0, y_{i}, 0, \cdots, 0, y_{k+1}, \cdots, y_{k+1}\right)\right|_{\mid=0}\right|_{y_{k+1}=\cdots=y_{n}=0} ; \\
\left\|\frac{\psi_{j}\left(0, \cdots, 0, y_{i}, 0, \cdots, 0\right)}{y_{i}}\right\| \leq \frac{2 \varepsilon K^{2}}{\sigma}
\end{gathered}
$$

where $\varepsilon>0$ can be made arbitrarily small by $\|a\| \ll 1$, which can be done by letting $\left\|y_{i}\right\| \ll 1$. Therefore, $\frac{\partial \psi_{j}}{\partial y_{i}}(0)=0$. This shows that \tilde{S} is tangent to E^{s} at $y=0$. That is, S is tangent to E^{s} at $x=0$.

The existence of the unstable manifold \tilde{U} of (10.5) is shown exactly the same way by reversing $t \rightarrow-t$. By considering

$$
\begin{equation*}
y^{\prime}=-B y-h(y), \tag{10.11}
\end{equation*}
$$

the stable manifold for (10.11) is the unstable manifold of (10.5). This concludes the proof.

Remark 10.1 If $g(x) \in C^{r}, r \geq 1$, then the stable and unstable manifolds S and U are also class C^{r}.

4) An Example for Construction of Successive Approximations

Consider the nonlinear system

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=-x_{1}-x_{2}^{2} \\
x_{2}^{\prime}=x_{2}-x_{1}^{2}
\end{array} .\right.
$$

For this system, we have

$$
\begin{gathered}
A=B=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), g(x)=h(x)=\binom{-x_{1}^{2}}{x_{1}^{2}} \\
U(t)=\left(\begin{array}{cc}
e^{-t} & 0 \\
0 & 0
\end{array}\right), V(t)=\left(\begin{array}{cc}
0 & 0 \\
0 & e^{t}
\end{array}\right), e^{B t}=U(t)+V(t)=\left(\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{t}
\end{array}\right) ; \\
a=\binom{a_{1}}{0}, n=2 \text { and } k=1 .
\end{gathered}
$$

The integral equation for $u(t, a)$ is given by

$$
u(t, a)=\binom{e^{-t} a_{1}}{0}+\int_{0}^{t}\binom{e^{-(t-s)} u_{2}^{2}(s, a)}{0} d s-\int_{t}^{\infty}\binom{0}{e^{t-s} u_{1}^{2}(s, a)} d s
$$

We find

$$
\begin{gathered}
u^{(0)}(t, a)=0 ; u^{(1)}(t, a)=\binom{e^{-t} a_{1}}{0} ; \\
u^{(2)}(t, a)=\binom{e^{-t} a_{1}}{0}-\int_{t}^{\infty}\binom{0}{e^{t-s} e^{-2 s} a_{1}^{2}} d s=\binom{e^{-t} a_{1}}{-\frac{e^{-2 t}}{3} a_{1}^{2}} ; \\
u^{(3)}(t, a)=\binom{e^{-t} a_{1}}{0}-\frac{1}{9} \int_{0}^{t}\binom{e^{-(t-s)} e^{-4 s} a_{1}^{4}}{0} d s-\int_{t}^{\infty}\binom{0}{e^{t-s} e^{-2 s} a_{1}^{2}} d s \\
=\binom{e^{-t} a_{1}+\frac{1}{27}\left(e^{-4 t}-e^{-t}\right) a_{1}^{4}}{-\frac{1}{3} e^{-2 t} a_{1}^{2}} .
\end{gathered}
$$

It can be shown that $u^{(4)}(t, a)-u^{(3)}(t, a)=o\left(a_{1}^{5}\right)$ and therefore $\psi_{2}\left(a_{1}\right)=u_{2}\left(0, a_{1}, 0\right)$ is approximated by

$$
\psi_{2}\left(a_{1}\right)=u_{2}\left(0, a_{1}, 0\right)=-\frac{1}{3} a_{1}^{2}+o\left(a_{1}^{5}\right)
$$

as $a_{1} \rightarrow 0$. Hence, the local stable manifold S is approximated by

$$
S: x_{2}=-\frac{1}{3} x_{1}^{2}+o\left(x_{1}^{5}\right)
$$

as $x_{1} \rightarrow 0$. The local unstable manifold U is approximated by applying exactly the same procedure to the above system with $t \rightarrow-t, x_{1}$ and x_{2} interchanged as follows.

$$
U: x_{1}=-\frac{1}{3} x_{2}^{2}+o\left(x_{2}^{5}\right),
$$

as $x_{2} \rightarrow 0$. These approximations for S and U near the origin, E^{s} and E^{u} for $x^{\prime}=A x$ are shown in Fig. 10.2.

Fig. 10.2

5) Global Stable and Unstable Manifolds

Definition 10.1 Let φ_{t} be the flow of (10.3). The global stable and unstable manifolds of (10.3) at the origin are defined by

$$
W^{s}(0)=\bigcup_{t \leq 0} \varphi_{t}(S) \text { and } W^{u}(0)=\bigcup_{t \geq 0} \varphi_{t}(U) .
$$

Fig. 10.3

Remark 10.2 For all $x \in W^{s}(0), \lim _{t \rightarrow \infty} \varphi_{t}(x)=0$ and for all $x \in W^{u}(0), \lim _{t \rightarrow-\infty} \varphi_{t}(x)=0$. Remark 10.3 Fig. 10.3 shows some numerically computed solution curves for the example 4). The global stable and unstable manifolds $W^{s}(0)$ and $W^{u}(0)$ for the same example are shown in Fig.10.4.

Fig. 10.4

3. Summary

- Although the stable manifold theorem and the linearization characterize that $x^{\prime}=f(x)$ and $x^{\prime}=D f(0) x$ have the same stability property near a hyperbolic equilibrium, the stable manifold theorem gives much more information on geometric structures.
- The stable manifold theorem uses a geometric way to characterize the local property near a hyperbolic equilibrium. The linearization uses an analytical way to characterize the local property near a hyperbolic equilibrium.
- Stable and unstable manifolds are both lower dimensional smooth surfaces in R^{n}. From Lyapunov stability, even the neighborhood of equilibrium is n dimensional domain. Therefore, if there exists an unstable manifold, it is definitely unstable in the sense of Lyapunov stability.

Homework Review today's lecture and understand the details.

