Lecture 10

Outline

- 1. Motivation
- 2. Stable Manifold Theorem
- 3. Summary
- 1. Motivation
 - The stable manifold theorem is one of the most important results in the local qualitative theory of ODE. It is similar to the linearization with different terminology: analytic way and geometric way.

2. Stable Manifold Theorem

1) The Linearized System

Consider the autonomous system

$$x' = f(x), \tag{10.1}$$

where f(0) = 0 and $f \in C^{1}(B_{r}(0))$. The linearized system is given by

$$x' = Ax, \qquad (10.2)$$

where A = Df(0). Let x = 0 be hyperbolic for both (10.1) and (10.2).

Suppose that A in (10.2) has k eigenvalues with negative real part and n-k eigenvalues with positive real part. Then $R^n = E^s \oplus E^u$ with dim $E^s = k$ and dim $E^u = n-k$. This situation can be essentially extended to (10.1) near any hyperbolic equilibrium.

2) Statement of Stable Manifold Theorem

Consider

$$x' = Ax + g(x), (10.3)$$

where g(x) is C^1 in U containing the origin, satisfying the basic condition as follows. g(0) = 0 and g'(0) = 0. Moreover, for any $\varepsilon > 0$ there exists $\delta > 0$ such that

$$\|x\| < \delta, \|y\| < \delta \quad \Rightarrow \quad \|g(x) - g(y)\| \le \varepsilon \|x - y\|.$$

$$(10.4)$$

Theorem 10.1 (Local Stable Manifold Theorem) Suppose that A in (10.3) has k eigenvalues with negative real part and n-k eigenvalues with positive real part. Let g(x) satisfy the basic condition. Then, there exist

- 1. an k-dimensional stable manifold $S = W^{s}(0)$ of class C^{1} for (10.3) with dim $W^{s}(0) = \dim E^{s}$, tangent to the stable subspace E^{s} at x = 0, which is invariant under the flow φ_t of (10.3) and φ_t that starts on $W^s(0)$ is exponentially decay as $t \to +\infty$;
- 2. an n-k-dimensional unstable manifold $U = W^{u}(0)$ of class C^{1} for (10.3) with dim $W^{u}(0) = \dim E^{u}$, tangent to the unstable subspace E^{u} at x = 0, which is invariant under the flow φ_t of (10.3) and φ_t that starts on $W^u(0)$ is exponentially decay as $t \rightarrow -\infty$.

3) An illustrative Example

Consider the following nonlinear system

$$x'=f(x)\,,$$

where $f(x) = \begin{pmatrix} -x_1 \\ -x_2 + x_1^2 \\ x_2 + x_1^2 \end{pmatrix}$. x=0 is only equilibrium. The linearized system is given by

$$x' = Df(0)x,$$

where $A = Df(0) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Obviously, the stable subspace E^{s} is $x_{1} - x_{2}$

plane and unstable subspace E^{u} is x_{3} -axis. The solution with $x(0) = c = (c_1, c_2, c_3)^T$ is easily solved by

$$x_1(t) = c_1 e^{-t}; \quad x_2(t) = c_2 e^{-t} + c_1^2 (e^{-t} - e^{-2t}); \quad x_3(t) = c_3 e^t + \frac{c_1^2}{3} (e^t - e^{-2t}).$$

Clearly, $\lim_{t \to +\infty} \varphi_t(c) = 0 \iff c_3 + \frac{c_1^2}{3} = 0$. Thus,

$$W^{s} = \{ c \in R^{3} \mid c_{3} + \frac{c_{1}^{2}}{3} = 0 \}.$$

Similarly, $\lim_{t \to \infty} \varphi_t(c) = 0 \iff c_1 = c_2 = 0$. Then,

$$W^{u} = \{ c \in R^{3} \mid c_{1} = c_{2} = 0 \}.$$

The surface of the stable manifold S for this system is shown in Fig. 10.1, where S is tangent to E^s at x = 0 and the surface of the unstable manifold U is identical to E^u .

Fig. 10.1

3) Proof of (Local) Stable Manifold Theorem

Proof. Since A has k eigenvalues with negative real part and n-k eigenvalues with positive real part, there exists an $n \times n$ invertible matrix C s.t.

$$B = C^{-1}AC = \begin{pmatrix} P & O \\ O & Q \end{pmatrix},$$

where the eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$ of $k \times k$ matrix *P* have negative real part and the eigenvalues $\lambda_{k+1}, \lambda_{k+2}, \dots, \lambda_n$ of $(n-k) \times (n-k)$ matrix *Q* have positive real part. Under the transformation x = C y, (10.3) becomes

$$y' = B y + h(y),$$
 (10.5)

where $h(y) = C^{-1}g(Cy)$ still satisfy the basic condition. For simplicity, we still use the same notation of ε and δ used in (10.4).

It will be first shown in the proof that there exist n-k differential functions

$$y_{j} = \psi_{j}(y_{1}, y_{2}, \dots, y_{k}), \quad j = k+1, \dots, n,$$

that define a k - dimensional differential manifold \tilde{S} for (10.5). Then, the local stable manifold S for (10.3) is obtained by x = Cy.

Let

$$U(t) = \begin{pmatrix} e^{P_t} & O \\ O & O \end{pmatrix} \text{ and } V(t) = \begin{pmatrix} O & O \\ O & e^{Q_t} \end{pmatrix}.$$

Then,

$$e^{Bt} = U(t) + V(t)$$

and

$$U'(t) = PU(t) = BU(t), V'(t) = QV(t) = BV(t)$$

Then, we choose $\alpha > 0$ sufficiently small s.t. $\max_{j=1,\dots,k} \operatorname{Re} \lambda_j < -\alpha < 0$. For such a $\alpha > 0$ we can choose K > 0 sufficiently large and $\sigma > 0$ sufficiently small such that

$$||U(t)|| \le K e^{-(\alpha+\sigma)t} \text{ for all } t \ge 0; ||V(t)|| \le K e^{\sigma t} \text{ for all } t \le 0.$$

Next consider the integral equation

$$u(t,a) = U(t)a + \int_0^t U(t-s)h(u(s,a)) \, ds - \int_t^\infty V(t-s)h(u(s,a)) \, ds \,. \tag{10.6}$$

If u(t, a) is a continuous solution of (10.6), then, differentiating (10.6) on both sides yields

$$u'(t, a) = U'(t)a + \int_0^t U'(t-s)h(u(s, a)) ds - \int_t^\infty V'(t-s)h(u(s, a)) ds$$

+ $[U(0) + V(0)]h(u(t, a))$
= $B\{U(t)a + \int_0^t U(t-s)h(u(s, a)) ds - \int_t^\infty V(t-s)h(u(s, a)) ds\} + h(u(t, a))$
= $Bu(t, a) + h(u(t, a)).$

Then, u(t, a) is a smooth solution of (10.5). We solve (10.6) by a successive approximation. Before solving (10.6), we assume $\varepsilon \leq \frac{\sigma}{4K}$ and $||a|| \leq \frac{\delta}{2K}$ because

it is for the local. Let

$$u^{(0)}(t,a) = 0;$$

$$u^{(j+1)}(t,a) = U(t)a + \int_0^t U(t-s)h(u^{(j)}(s,a)) ds - \int_t^\infty V(t-s)h(u^{(j)}(s,a)) ds.$$

We will establish two estimates by induction as follows.

$$||u^{(j)}(t,a)|| \le 2K ||a|| e^{-\alpha t}$$
, for $t \ge 0$. (10.7)

$$||u^{(j)}(t,a) - u^{(j-1)}(t,a)|| \le \frac{K ||a|| e^{-\alpha t}}{2^{j-1}}, \text{ for } t \ge 0.$$
 (10.8)

To show (10.7), it holds for j = 0 at first. Assume that (10.7) holds for j = m, i.e.

$$||u^{(m)}(t,a)|| \le 2K ||a|| e^{-\alpha t}$$
, for $t \ge 0$.

Then, $||u^{(m)}(t,a)|| \le 2K ||a|| \le \delta$. Notice that for V(t-s), $t-s \le 0$ as $s \ge t$. It follows that

$$\begin{aligned} \| u^{(m+1)}(t,a) \| &\leq \| U(t) \| \| a \| + \varepsilon \int_{0}^{t} \| U(t-s) \| \| u^{(m)}(s,a) \| ds + \varepsilon \int_{t}^{\infty} \| V(t-s) \| \| u^{(m)}(s,a) \| ds \\ &\leq K e^{-(\alpha+\sigma)t} \| a \| + 2\varepsilon K^{2} \| a \| \int_{0}^{t} e^{-(\alpha+\sigma)(t-s)} e^{-\alpha s} ds + 2\varepsilon K^{2} \| a \| \int_{t}^{\infty} e^{\sigma(t-s)} e^{-\alpha s} ds \\ &\leq K e^{-(\alpha+\sigma)t} \| a \| + 2\varepsilon K^{2} \| a \| \int_{0}^{t} e^{-(\alpha+\sigma)(t-s)} e^{-\alpha s} ds + 2\varepsilon K^{2} \| a \| \int_{t}^{\infty} e^{\sigma(t-s)} e^{-\alpha s} ds \\ &\leq K e^{-(\alpha+\sigma)t} \| a \| + 2\varepsilon K^{2} \| a \| e^{-\alpha t} \frac{1}{\sigma} + 2\varepsilon K^{2} \| a \| e^{-\alpha t} \frac{1}{\sigma+\alpha} \\ &\leq K \| a \| (e^{-(\alpha+\sigma)t} + e^{-\alpha t}) \leq 2K \| a \| e^{-\alpha t}, \text{ for } t \geq 0. \end{aligned}$$

By induction, we have (10.7) for all j.

To show (10.8), we show that (10.8) holds for j=1 at first. Since

$$|| u^{(1)}(t, a) - u^{(0)}(t, a) || = || u^{(1)}(t, a) || = || U(t) a || \le || U(t) || || a ||$$

$$\le K || a || e^{-(\alpha + \sigma)t} \le K || a || e^{-\alpha t}, \text{ for } t \ge 0,$$

then (10.8) holds for j = 1. We assume that (10.8) holds for j = m. Notice that since $||u^{(j)}(t, a)|| \le 2K ||a|| \le \delta$ for all j and $t \ge 0$ by (10.7), we have

$$\|h(u^{(m)}(t,a)) - h(u^{(m-1)}(t,a))\| \le \varepsilon \|u^{(m)}(t,a) - u^{(m-1)}(t,a)\|, \ t \ge 0.$$

Then,

$$\begin{aligned} \| u^{(m+1)}(t,a) &) - h(u^{(m)}(t,a)) \| \leq \int_{0}^{t} \| U(t-s) \| \cdot \| h(u^{(m)}(s,a)) - h(u^{(m-1)}(s,a)) \| ds \\ &+ \int_{t}^{\infty} \| V(t-s) \| \cdot \| h(u^{(m)}(s,a)) - h(u^{(m-1)}(s,a)) \| ds \\ &\leq \varepsilon K \int_{0}^{t} e^{-(\alpha+\sigma)(t-s)} \cdot \frac{K \| a \| e^{-\alpha s}}{2^{m-1}} ds + \varepsilon K \int_{t}^{\infty} e^{-\sigma(t-s)} \cdot \frac{K \| a \| e^{-\alpha s}}{2^{m-1}} ds \\ &\leq \frac{\varepsilon K^{2} \| a \|}{2^{m-1}} \{ e^{-(\alpha+\sigma)t} \int_{0}^{t} e^{\sigma s} ds + e^{-\sigma t} \int_{t}^{\infty} e^{-(\sigma+\alpha)s} ds \} \\ &\leq \frac{\varepsilon K^{2} \| a \|}{2^{m-1}} (\frac{1}{\sigma} + \frac{1}{\sigma+\alpha}) e^{-\alpha t} \leq \frac{\varepsilon K^{2} \| a \|}{2^{m-2}} \cdot \frac{1}{\sigma} e^{-\alpha t} \leq \frac{K \| a \|}{2^{m}} e^{-\alpha t}, \ t \geq 0 \end{aligned}$$

By induction, we have (10.8) for all j and $t \ge 0$. Thus, for $n > m \ge N$ and $t \ge 0$,

$$\| u^{(n)}(t,a) - u^{(m)}(t,a) \| = \sum_{j=m}^{n} \| u^{(j+1)}(t,a) - u^{(j)}(t,a) \| \le \sum_{j=N}^{\infty} \| u^{(j+1)}(t,a) - u^{(j)}(t,a) \|$$
$$\le \sum_{j=N}^{\infty} \frac{K \| a \| e^{-\alpha t}}{2^{j}} \le K \| a \| \sum_{j=N}^{\infty} \frac{1}{2^{j}} = \frac{K \| a \|}{2^{N-1}} \to 0$$

as $N \to \infty$ uniformly for all $t \ge 0$. Therefore, $\{u^{(j)}(t, a)\}$ is a uniform Cauchy sequence for $t \ge 0$. Then, $\lim_{j\to\infty} u^{(j)}(t, a) = u(t, a)$, which is continuous for $t \ge 0$. Moreover, by (10.7), we have

$$||u(t,a)|| \le 2K ||a|| e^{-\alpha t}$$
 for $t \ge 0$, as $||a|| \le \frac{\delta}{2K}$. (10.9)

Taking limit on both sides of (10.8), u(t, a) is the solution of (10.6).

Look at (10.8) and notice that U(t)a, we know that the only previous k components of a can determine u(t, a). Hence the last n-k components of a may and will take all 0. That is, $u(t, a) = (u_1(t, a), u_2(t, a), \dots, u_n(t, a))^T$ satisfy the initial conditions

$$u_{i}(0, a) = a_{i}, \quad j = 1, 2, \dots, k;$$

and based on (10.6) we have

$$u_{j}(0, a) = -\int_{0}^{\infty} V(-s) h(u(s, a_{1}, a_{2}, \dots, a_{k}, 0, \dots, 0)) ds, \quad j = k+1, k+2, \dots, n.$$

Now we are in the position to define the manifold $\Psi = (\psi_{k+1}, \psi_{k+2}, \dots, \psi_n)$ by

$$\Psi_{j}(a_{1}, a_{2}, \dots, a_{k}) = u_{j}(0, a_{1}, a_{2}, \dots, a_{k}, 0, \dots, 0).$$
 (10.10)

Then, the initial values $y_j = u_j(0, a_1, a_2, \dots, a_k, 0, \dots, 0)$ satisfy

$$y_j = \psi_j(y_1, y_2, \dots, y_k)$$
 for $j = k + 1, k + 2, \dots, n$.

According to (10.10), these equations define a manifold \tilde{S} in the domain of $\sqrt{y_1^2 + y_2^2 + \dots + y_k^2} < \frac{\delta}{2K}$. \tilde{S} is also differentiable (Similar to show that solutions are differentiable w.r.t. initial conditions. Omitted). It is locally defined.

Show that \tilde{S} is invariant. If y(t) is a solution of (10.5) with $y(0) \in \tilde{S}$, i.e. y(0) = u(0, a), then, y(t) = u(t, a) by uniqueness. Therefore $y(t) \in \tilde{S}$ and by (10.9) $\lim_{t \to t \in S} y(t) = 0$. Therefore, \tilde{S} is the stable invariant manifold.

Show that \tilde{S} is unique. If y(t) is a solution of (10.5) with $y(0) \notin \tilde{S}$, then, $\lim_{t \to +\infty} y(t) \neq 0$. Show it by contradiction. Suppose that $||y(t)|| \le \delta$ for all $t \ge 0$. Solving (10.5), we have

$$y(t) = e^{Bt}y(0) + \int_0^t e^{B(t-s)}h(y(s))ds$$

= $(U(t) + V(t))y(0) + \int_0^t (U(t-s) + V(t-s))h(y(s))ds$
= $(U(t) + V(t))y(0) + \int_0^t U(t-s)h(y(s))ds + \int_0^t V(t-s))h(y(s))ds$
= $(U(t) + V(t))y(0) + \int_0^t U(t-s)h(y(s))ds - \int_t^\infty V(t-s)h(y(s))ds$
+ $\int_0^\infty V(t-s)h(y(s))ds$
= $U(t)y(0) + V(t)c + \int_0^t U(t-s)h(y(s))ds - \int_t^\infty V(t-s)h(y(s))ds$,

where $c = y(0) + \int_0^\infty V(-s)h(y(s)) ds$ is finite because the infinite integral converges. In the expression of y(t), V(t) is unbounded because Q has eigenvalues with all positive real parts unless c = 0. But if c = 0, then $y(0) = -\int_0^\infty V(-s)h(y(s)) ds \in \tilde{S}$. This is a contradiction. The contradiction shows that \tilde{S} is locally unique.

Show that \tilde{S} is tangent to the stable subspace

$$E^{s} = \{ y \in R^{n} \mid y_{k+1} = y_{k+2} = \dots = y_{n} = 0 \}$$

of (10.5) at y = 0. Notice that $u_i(t, 0)|_{t=0} = 0$ and $||u(t, a)|| \le 2K ||a|| e^{-\alpha t}$, and

$$\| u_{j}(0,a) \| \leq \int_{0}^{\infty} \| V(-s) \| \| h(u(s,a)) \| ds \leq \varepsilon \int_{0}^{\infty} \| V(-s) \| \| u(s,a) \| ds$$

$$\leq \varepsilon 2K^{2} \| a \| \int_{0}^{\infty} e^{-(\sigma+\alpha)s} ds = \varepsilon 2K^{2} \| a \| \frac{1}{\sigma+\alpha} \leq 2\varepsilon K^{2} \| a \| \frac{1}{\sigma},$$

we have

$$\begin{aligned} \frac{\partial \psi_{j}}{\partial y_{i}}(0) &= \lim_{y_{i} \to 0} \frac{\psi_{j}(0, \dots, 0, y_{i}, 0, \dots, 0) - \psi_{j}(0, \dots, 0)}{y_{i}} = \lim_{y_{i} \to 0} \frac{\psi_{j}(0, \dots, 0, y_{i}, 0, \dots, 0)}{y_{i}}; \\ \psi_{j}(0, \dots, 0, y_{i}, 0, \dots, 0) &= u_{j}(t, 0, \dots, 0, y_{i}, 0, \dots, 0, y_{k+1}, \dots, y_{k+1}) \Big|_{t=0}_{y_{k+1} = \dots = y_{n} = 0}; \\ & ||\frac{\psi_{j}(0, \dots, 0, y_{i}, 0, \dots, 0)}{y_{i}}|| \le \frac{2\varepsilon K^{2}}{\sigma}, \end{aligned}$$

where $\varepsilon > 0$ can be made arbitrarily small by ||a|| << 1, which can be done by letting $||y_i|| << 1$. Therefore, $\frac{\partial \psi_j}{\partial y_i}(0) = 0$. This shows that \tilde{S} is tangent to E^s

at y = 0. That is, S is tangent to E^s at x = 0.

The existence of the unstable manifold \tilde{U} of (10.5) is shown exactly the same way by reversing $t \rightarrow -t$. By considering

$$y' = -By - h(y),$$
 (10.11)

the stable manifold for (10.11) is the unstable manifold of (10.5). This concludes the proof. \Box

Remark 10.1 If $g(x) \in C^r$, $r \ge 1$, then the stable and unstable manifolds S and

U are also class C^r .

4) An Example for Construction of Successive Approximations

Consider the nonlinear system

$$\begin{cases} x_1' = -x_1 - x_2^2 \\ x_2' = x_2 - x_1^2 \end{cases}$$

For this system, we have

$$A = B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad g(x) = h(x) = \begin{pmatrix} -x_1^2 \\ x_1^2 \end{pmatrix};$$
$$U(t) = \begin{pmatrix} e^{-t} & 0 \\ 0 & 0 \end{pmatrix}, \quad V(t) = \begin{pmatrix} 0 & 0 \\ 0 & e^t \end{pmatrix}, \quad e^{Bt} = U(t) + V(t) = \begin{pmatrix} e^{-t} & 0 \\ 0 & e^t \end{pmatrix};$$
$$a = \begin{pmatrix} a_1 \\ 0 \end{pmatrix}, \quad n = 2 \text{ and } k = 1.$$

The integral equation for u(t,a) is given by

$$u(t,a) = \begin{pmatrix} e^{-t}a_1 \\ 0 \end{pmatrix} + \int_0^t \begin{pmatrix} e^{-(t-s)}u_2^2(s,a) \\ 0 \end{pmatrix} ds - \int_t^\infty \begin{pmatrix} 0 \\ e^{t-s}u_1^2(s,a) \end{pmatrix} ds.$$

We find

$$u^{(0)}(t,a) = 0; \quad u^{(1)}(t,a) = \begin{pmatrix} e^{-t}a_1 \\ 0 \end{pmatrix};$$

$$u^{(2)}(t,a) = \begin{pmatrix} e^{-t}a_1 \\ 0 \end{pmatrix} - \int_t^{\infty} \begin{pmatrix} 0 \\ e^{t-s}e^{-2s}a_1^2 \end{pmatrix} ds = \begin{pmatrix} e^{-t}a_1 \\ -\frac{e^{-2t}}{3}a_1^2 \end{pmatrix};$$

$$u^{(3)}(t,a) = \begin{pmatrix} e^{-t}a_1 \\ 0 \end{pmatrix} - \frac{1}{9}\int_0^t \begin{pmatrix} e^{-(t-s)}e^{-4s}a_1^4 \\ 0 \end{pmatrix} ds - \int_t^{\infty} \begin{pmatrix} 0 \\ e^{t-s}e^{-2s}a_1^2 \end{pmatrix} ds$$

$$= \begin{pmatrix} e^{-t}a_1 + \frac{1}{27}(e^{-4t} - e^{-t})a_1^4 \\ -\frac{1}{3}e^{-2t}a_1^2 \end{pmatrix}.$$

It can be shown that $u^{(4)}(t,a) - u^{(3)}(t,a) = o(a_1^5)$ and therefore $\psi_2(a_1) = u_2(0, a_1, 0)$ is approximated by

$$\psi_2(a_1) = u_2(0, a_1, 0) = -\frac{1}{3}a_1^2 + o(a_1^5)$$

as $a_1 \rightarrow 0$. Hence, the local stable manifold *S* is approximated by

$$S: x_2 = -\frac{1}{3}x_1^2 + o(x_1^5),$$

as $x_1 \rightarrow 0$. The local unstable manifold U is approximated by applying exactly the same procedure to the above system with $t \rightarrow -t$, x_1 and x_2 interchanged as follows.

$$U: x_1 = -\frac{1}{3}x_2^2 + o(x_2^5),$$

as $x_2 \rightarrow 0$. These approximations for *S* and *U* near the origin, E^s and E^u for x' = Ax are shown in Fig. 10.2.

Fig. 10.2

5) Global Stable and Unstable Manifolds

Definition 10.1 Let φ_t be the flow of (10.3). The global stable and unstable manifolds of (10.3) at the origin are defined by

Fig. 10.3

Remark 10.2 For all $x \in W^{s}(0)$, $\lim_{t \to \infty} \varphi_{t}(x) = 0$ and for all $x \in W^{u}(0)$, $\lim_{t \to -\infty} \varphi_{t}(x) = 0$. **Remark 10.3** Fig. 10.3 shows some numerically computed solution curves for the example 4). The global stable and unstable manifolds $W^{s}(0)$ and $W^{u}(0)$ for the same example are shown in Fig.10.4.

Fig. 10.4

3. Summary

- Although the stable manifold theorem and the linearization characterize that x' = f(x) and x' = Df(0)x have the same stability property near a hyperbolic equilibrium, the stable manifold theorem gives much more information on geometric structures.
- The stable manifold theorem uses a geometric way to characterize the local property near a hyperbolic equilibrium. The linearization uses an analytical way to characterize the local property near a hyperbolic equilibrium.
- Stable and unstable manifolds are both lower dimensional smooth surfaces in R^n . From Lyapunov stability, even the neighborhood of equilibrium is *n* dimensional domain. Therefore, if there exists an unstable manifold, it is definitely unstable in the sense of Lyapunov stability.

Homework Review today's lecture and understand the details.