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1. Motivation
e The stable manifold theorem is one of the most important results in the local
qualitative theory of ODE. It is similar to the linearization with different
terminology: analytic way and geometric way.
2. Stable Manifold Theorem

1) The Linearized System

Consider the autonomous system
X'=f(x), (10.1)

where f(0)=0 and f eC*(B,(0)). The linearized system is given by
X' = AX, (10.2)

where A=Df(0).Let x=0 be hyperbolic for both (10.1) and (10.2).
Suppose that A in (10.2) has k eigenvalues with negative real part and n—k

eigenvalues with positive real part. Then R"=E°*@®E" with dimE®*=k and

dimE" =n-k . This situation can be essentially extended to (10.1) near any

hyperbolic equilibrium.
2) Statement of Stable Manifold Theorem

Consider
X"=Ax+g(x), (10.3)

where g(x) is C' in U containing the origin, satisfying the basic condition as

follows. g(0)=0 and g'(0)=0. Moreover, forany & >0 there exists & >0 such

that



Ix[[<&, lyll<s = llgx)-gMl<ellx=yll. (10.4)

Theorem 10.1 (Local Stable Manifold Theorem) Suppose that A in (10.3) has k
eigenvalues with negative real part and n—k eigenvalues with positive real part. Let

g(x) satisfy the basic condition. Then, there exist
1. an k -dimensional stable manifold S=W?*®(0) of class C' for (10.3) with
dimW *(0)=dimE*®, tangent to the stable subspace E°® at x=0, which is

invariant under the flow ¢, of (10.3) and ¢, that starts on W°*(0) is

exponentially decay as t — +o0;

2. an n—k -dimensional unstable manifold U =W “(0) of class C* for (10.3) with
dimW"(0)=dimE", tangent to the unstable subspace E" at x=0, which is

invariant under the flow ¢, of (10.3) and ¢, that starts on W"(0) is

exponentially decay as t — —oo.
3) An illustrative Example

Consider the following nonlinear system

X'=f(x),
_Xl
where f(x)=|-x,+x2|. x=0 isonly equilibrium. The linearized system is given by
X, + X/
x'=Df(0)x,
-1 0 O
where A=Df(0)=| 0 -1 0|. Obviously, the stable subspace E°® is x - X,
0 0 1

plane and unstable subspace E" is X, -axis. The solution with

x(0)=c=(c,,cC,,C,)" iseasily solved by

2
c
x,(t)=ce™; x,(t)=c,et+ci(e” —e*); x,(t)=c,e' +?l(et —e %),



CZ
Clearly, limg (c)=0 < c3+?l:O.Thus,

2

s 3 C1
W*={ceR |cs+?:0}.
Similarly, tIirp »,(c)=0 < c,=c,=0.Then,

W' ={ceR®|c,=c,=0}.
The surface of the stable manifold S for this system is shown in Fig. 10.1, where S
istangent to E° at x=0 and the surface of the unstable manifold U is identical

to EY.

X3

Fig. 10.1

3) Proof of (Local) Stable Manifold Theorem

Proof. Since A has k eigenvalues with negative real part and n—k eigenvalues
with positive real part, there exists an nxn invertible matrix C s.t.

. P O
B:C AC: ’
O Q
where the eigenvalues A4,, 4,,---, 4, of kxk matrix P have negative real part
and the eigenvalues A, 4.,.---, 4, of (n—k)x(n—k) matrix Q have positive
real part. Under the transformation x=Cy, (10.3) becomes

y'=By+h(y), (10.5)
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where h(y)=C™g(Cy) still satisfy the basic condition. For simplicity, we still use

the same notation of ¢ and & used in (10.4).
It will be first shown in the proof that there exist n—k differential functions

Y :‘//j(yp YorroaYi)s J=k+1 -,

that define a k- dimensional differential manifold S for (10.5). Then, the local

stable manifold S for (10.3) is obtained by x=Cy.

e’ O O O
U(t):[O Oj and V(t):[O thj.

e® =U(t)+V ()

Let

Then,

and

U'(t)=PU((t)=BU(), V'(t)=QV(t)=BV(t).
Then, we choose « >0 sufficiently small s.t. max Rel; <-a<0. For such a
=L

a >0 we can choose K >0 sufficiently large and o >0 sufficiently small such
that

JU@)|<Ke “ forall t>0; ||V(t)]<Ke’" forall t<0.
Next consider the integral equation
u(t,a):U(t)a+I;U(t—s)h(u(s,a))ds—jth(t—s)h(u(s,a))ds. (10.6)

If u(t,a) isa continuous solution of (10.6), then, differentiating (10.6) on both sides

yields
u'(t, a) :U'(t)a+L:U'(t—s)h(u(s, a))ds—jfv'(t-s)h(u(s, a))ds

+[U(©)+V (O] h(u(t a)
=BUMa+ [ Ut-9)h(u(s, @) ds— [V t-9)h(u(s, a)) dsh+h u(t, a)
=Bu(t,a)+h(u(t, a)).

Then, u(t,a) is a smooth solution of (10.5). We solve (10.6) by a successive

approximation. Before solving (10.6), we assume 53% and ||a||£% because



it is for the local. Let
u®(t,a)=0;
ud? (t, a) :U(t)a+I;U (t—s)h(uP(s, a)) ds—LwV(t—s)h(u“)(s, a))ds.
We will establish two estimates by induction as follows.

Jlu@(t,a)||<2K | alle ™, for t>0. (10.7)

Kllafle™

||u(j)(t, a)_u(jfl)(t, a)|| < e , for t>0. (10.8)

To show (10.7), it holds for j=0 at first. Assume that (10.7) holds for j=m, i.e.
Jlu™(t, a)||<2K | alle™, for t>0.

Then, [[u™(t,a)||<2K|lal|<d5. Notice that for V(t—s), t—s<0 as s>t. It
follows that

m+ t m * m
Ju™® t, a)||S||U(t)||||a||+8j0||U(t—5)||||U( (s, a)||dS+8]t IV (t=s)llllu™ (s, a)|lds

t ©
<Ke @ a||+2¢K ? || a|| joe*“*“)“*s)e*“ ds+2¢K 2| all L e (s

t ©
<Ke @ a||+2¢K ? || a|| joe*“*“)“*s)e*“ ds+2¢K 2| all L e (s

1
ot+a

<Ke @ ||af|+2¢K? [l e‘“‘%+ 26K ||afle™
<K|a|(e™" +e ) <2K|ale™, for t>0.
By induction, we have (10.7) for all j.
To show (10.8), we show that (10.8) holds for j=1 at first. Since
Iu®(ta)-u® a)l=lu®t a)ll=Ilu®all<lu®lllal
<K]ale ™" <K]|ale™,for t>0,
then (10.8) holds for j=1.We assume that (10.8) holds for j=m. Notice that since
Jlu(t,a)||<2K ||a]|<s forall j and t>0 by (10.7), we have

[hu™(t,a)-hu™ta)|<ellu™(ta)-u™ba)|, t=>0.

Then,



lu™P(t,))-hu™(ta)ll< f;ll U(t=s)ll-Ihu™(s,a))~h(u™?(s,a))llds
+ I:OIIV (t=9)II-IIh(u™(s,a))~h (U™ (s,a)llds

) Kllaje™ oo Kllalle™

t 0

SgK'[oe’(”‘“’)“’S oo ds+gKLe = ds
nglla” —(a+o)t t os ot [* —(o+a)s

<Z - 0=l

S TE {e _[oe ds+e Ite ds}
K2|lall ,1 1 K2|la| 1 Klla

ceKfall L 1 KAl Lo KAl g
2" Yo o+a 2" & 2"

By induction, we have (10.8) forall j and t>0.Thus,for n>m>N and t>0,

Ju®™(t, a)—u™t, a)[|=> [lu (@t a)-uP(t, a) <D lu¥?(t, a)-uP(t a)|
j=m j=N

Klalle™ e“t =1 K|a

= = 2] 2N—l
as N — oo uniformly for all t>0. Therefore, {u‘”(t, a)} is a uniform Cauchy

sequence for t>0. Then, limu®(t,a)=u(t,a), which is continuous for t>0.
J—ow

Moreover, by (10.7), we have
lu(t,a)||<2K ||a|le™" for t>0,as ||a||s%. (10.9)

Taking limit on both sides of (10.8), u(t,a) is the solution of (10.6).
Look at (10.8) and notice that U(t)a, we know that the only previous k
components of a can determine u(t,a). Hence the last n—k components of a

may and will take all 0. Thatis, u(t,a)=(u,(t,a),u,(t,a),---,u,(t,a))" satisfy the

initial conditions
u,(0,a)=a;, j=12,---,k;

and based on (10.6) we have
uj(O,a):—j:V(—s)h(u(s,al,az, -a,,0,---,0))ds, j=k+Lk+2,---,n

Now we are in the position to define the manifold ¥ = (v, ., ¥,.,.,-=-,¥,) by



v,(a,a,,,a,)=u,0a,a, - a,0,:0). (10.10)
Then, the initial values y; =u,(0,a,,a,,---,a,,0,---,0) satisfy
yj:l//j(yl’ Yoo Yy) for j=k+Lk+2,-,n.

According to (10.10), these equations define a manifold S in the domain of

\/yf +Y 4ty <%. S is also differentiable (Similar to show that solutions
are differentiable w.r.t. initial conditions. Omitted). It is locally defined.

Show that S is invariant. If y(t) is a solution of (10.5) with y(0)e S, i.e.
y(0)=u(0,a), then, y(t)=u(t,a) by uniqueness. Therefore y(t)eS and by (10.9)

lim y(t) =0. Therefore, S is the stable invariant manifold.

Show that S is unique. If y(t) is a solution of (10.5) with y(0) &S, then,
tIim y(t)=0. Show it by contradiction. Suppose that | y(t)|[<o for all t>0.

Solving (10.5), we have
y(t)=ey(0)+ [ e h(y(s))ds

= UO+V )Y+ [ UE-9)+V E-s)h(y(s)ds

=(UO+V )Y+ [ Ut-9)h(y(s)ds+[ V(E-s)h(y(s))ds

= UM+ YO+ [UE-9)h(yE)ds—[VE-9)h(y(s)ds

+ [ VE-9)h(y(s)ds
UMY +V O+ [UE-9h(yE)ds- [ VE-s)h(y()ds.

where ¢ = y(0)+ J‘:V(—s)h(y(s))ds is finite because the infinite integral converges.
In the expression of y(t), V(t) is unbounded because Q has eigenvalues with all
positive real parts unless ¢=0. Butif ¢=0, then y(O):—IOwV(—s)h(y(s))dSG§.
This is a contradiction. The contradiction shows that S is locally unique.

Show that S is tangent to the stable subspace



ES:{VERn|yk+1:yk+2:"':yn:O}

of (10.5) at y=0. Notice that u;(t,0)|_,=0 and lu(t,a)||[<2K|lalle™*, and

lu,@)ll< [TIVE . a)lids<e [TV s)llues.a)l ds

<e2K?all[ e ds = 2K al ——<2sK?[la]| =,
0 o+a o
we have
a i i O!...lol i’O!“'yo - i Ol'”ao . i O!“'!Ol iyo’“'ao
'//,(O):"mw,( y )= ( ):“mvm( y );
ﬁyi y;—0 Y y;—0 Y,
l//j(o’...’o,yi,O,...,O)=uj(t’0,...,0,yiio,...,o,ykﬂ,...,ykﬂ)tzo 0;
Yia==Yn=
”'//,-(0,---,0,yi,0,---,0) ”<28K2
Y, o

where &£>0 can be made arbitrarily small by | a|l<<1, which can be done by

ow . .
letting ||y, ||<<1. Therefore, %(0):0. This shows that S is tangent to E°®

at y=0.Thatis, S istangentto E°* at x=0.

The existence of the unstable manifold U of (10.5) is shown exactly the same

way by reversing t — —t. By considering
y'=-By-h(y), (10.11)

the stable manifold for (10.11) is the unstable manifold of (10.5). This concludes the
proof. o

Remark 10.1 If g(x)eC", r>1, then the stable and unstable manifolds S and

U arealsoclass C'.

4) An Example for Construction of Successive Approximations

Consider the nonlinear system

For this system, we have



acg| O hoo=| R
= —(0 J, 9(x) =h(x) = x|

et 0 0 0 B (e 0],
U(t)_[o O),V(t)—(o e‘j' e _U(t)+V(t)_[0 etj'

a:((g], n=2 and k=1.

The integral equation for u(t,a) is given by

-t [ a-t=9),2 . 0
u a):[e 0a1j+-|.0[e Lé)z (S’a)jds_-‘-t [e”uf(s,a)]ds

We find
-t
u®(t,a)=0: u(l’(t,a)z[e Oalj;
e—ta O eital
2 t,a)= 1 ds = -2 X
u ( a) ( 0 J It (et—se—ZSalZJ S _egtalz

o e

1
e’tal+2—(za="“—e’t)al4

It can be shown that u®(t,a)-u®(t,a)=0(a;) and therefore ,(a,)=u,(0,a,,0)

is approximated by

1
v,(a,)=u,(0a,0)= _Ealz +0(a15)
as a, — 0. Hence, the local stable manifold S is approximated by
S x, =12 +0(x?)
rh2 T 1 17
3
as X, — 0. The local unstable manifold U is approximated by applying exactly the

same procedure to the above system with t——t, X, and X, interchanged as

follows.



U:x, =—%x§+o(x§),

as X, — 0. These approximations for S and U near the origin, E* and E" for

x"= Ax are shown in Fig. 10.2.

X2

Xy

Fig. 10.2

5) Global Stable and Unstable Manifolds

Definition 10.1 Let ¢, be the flow of (10.3). The global stable and unstable

manifolds of (10.3) at the origin are defined by

W:(0)=Jo(S) and W"(0)=Je.(V).

t<0 t>0

X2

AN x.

Fig. 10.3
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Remark 10.2 For all xeW*(0), !imgot(x):o and for all xeW"(0), tIir_n 0, (x)=0.

Remark 10.3 Fig. 10.3 shows some numerically computed solution curves for the
example 4). The global stable and unstable manifolds W *(0) and W “(0) for the
same example are shown in Fig.10.4.

X2 X2

wH4(0) w(0)

Fig. 10.4

3. Summary

Although the stable manifold theorem and the linearization characterize that

x'=f(x) and x'=Df(0)x have the same stability property near a hyperbolic

equilibrium, the stable manifold theorem gives much more information on
geometric structures.

The stable manifold theorem uses a geometric way to characterize the local
property near a hyperbolic equilibrium. The linearization uses an analytical way
to characterize the local property near a hyperbolic equilibrium.

Stable and unstable manifolds are both lower dimensional smooth surfaces in R".
From Lyapunov stability, even the neighborhood of equilibrium is n
dimensional domain. Therefore, if there exists an unstable manifold, it is
definitely unstable in the sense of Lyapunov stability.

Homework Review today’s lecture and understand the details.
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